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Abstract. We determine the relative pion mass shift Mπ(L)/Mπ − 1 due to the finite spatial extent L of
the box by means of two-flavor chiral perturbation theory and the one-particle Lüscher formula. We use as
input the expression for the infinite volume ππ forward scattering amplitude up to next-to-next-to-leading
order and can therefore control the convergence of the chiral series. A comparison to the full leading order
chiral expression for the pion mass in finite volume allows us to check the size of subleading terms in the
large-L expansion.

1 Introduction

Shifts in particle masses and matrix elements due to the
finite extent of the box are systematic effects in the Monte
Carlo treatment of any lattice field theory. These shifts be-
come particularly large when the spectrum contains light
particles, and apply to all particles, no matter how heavy,
provided they couple to the light ones. In QCD with light
quarks, e.g., the nucleon mass receives such a correction,
which disappears only as the product of the pion mass
times the length of the box (MπL) gets large.

Fortunately, as long as pions are light, chiral symmetry
imposes strong constraints on the way observables devi-
ate from their infinite-volume limit: chiral perturbation
theory (CHPT) allows one to perform a systematic ex-
pansion around this limit and hence to control the finite-
volume effects analytically [1,2,4,3,5]. In some cases one
can directly translate the results of finite-volume simu-
lations into information about infinite-volume quantities
without any need to extrapolate in the box size L [6].
CHPT is an expansion in the pion mass and particle mo-
menta which have to be small in comparison to the chiral
symmetry breaking scale, usually identified with 4πFπ.
The conditions of applicability read

p

4πFπ
� 1 ,

Mπ

4πFπ
� 1 . (1)

Particles inside a box of spatial length L with periodic
boundary conditions and comparatively large or infinite
time extent may only have discrete values of their spatial
momenta, pk = 2πnk/L with nk ∈ Z. In this case the first
condition in (1) becomes a bound on the box size:

L � 1
2Fπ

∼ 1 fm . (2)

Note that these conditions have nothing to say as to
whether L is large compared to the Compton wavelength
of the pion or not. Both options are acceptable [5], but
they imply different ways to organize the chiral series:

MπL � 1 ↔ “p-expansion” , (3)
MπL � 1 ↔ “ε-expansion” . (4)

We shall here restrict ourselves to the former case but
investigate what the conditions (1b) and (2) mean quan-
titatively, by considering more than the leading order in
the chiral expansion. The underlying assumption is that
CHPT itself will tell us when the conditions of applica-
bility are not respected any more, via a bad convergence
behavior.

In this paper we study the pion mass, Mπ(L), defined
as eigenvalue of the QCD Hamiltonian in a L × L × L
box (with periodic boundary conditions), as it is extracted
on an Euclidean lattice for sufficiently large time T . The
finite-volume shift, Mπ(L) − Mπ, is – in coordinate space
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Fig. 1. The mass shift due to quantized momenta in the self-
energy corrections amounts to a finite-size effect from pion
exchange “around the world” (left), depicted by a “thermal
insertion” (cross) in diagrammatic language (right)
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view – due to the possibility of the pion wrapping “around
the world” or – in momentum space view – due to the
discrete momenta, as depicted in Fig. 1. The ultraviolet
properties of the theory are untouched – with toroidal
boundary conditions no new counterterms are introduced
and the finite-size effect is automatically finite. Our goal is
to study the shift Mπ(L) − Mπ (by Mπ we always denote
the infinite-volume value) as a function of Mπ and L. A
preliminary account has been given in [7]. Here, we include
one more order in the chiral expansion (at large L) and
carefully analyze the uncertainty due to the errors of the
QCD low-energy constants involved. In addition, we com-
pare to the full one-loop result by Gasser and Leutwyler
(which is leading in the chiral expansion, but includes the
large-L suppressed terms).

2 The pion mass in finite volume

2.1 Finite volume calculations in CHPT

In a series of remarkable papers [2,4,3], Gasser and
Leutwyler have shown that chiral symmetry does severely
constrain physical observables at low energy even if the
system is confined to a finite box. The only condition is
that the box length L must be several fermi, cf. (2).

Using the method of the effective chiral Lagrangian,
one can establish low-energy theorems for physical quan-
tities of interest, which have the generic form

Q = Q0
[
1 + ξq1 + ξ2q2 + O(ξ3)

]
, (5)

ξ ≡ M2
π

(4πFπ)2
, (6)

and the coefficients qi are quantities of order one in the chi-
ral expansion. They depend on the low-energy constants
(LEC), on ratios of momenta and quark masses, and, in
finite volume, on

λ ≡ MπL . (7)

For the pion mass and decay constant, the coefficient
q1 in the p-expansion (3) has been explicitly evaluated in
[2]:

Mπ(L) = Mπ

[
1 +

1
2Nf

ξ g̃1(λ) + O(ξ2)
]

, (8)

Fπ(L) = Fπ

[
1 − Nf

2
ξ g̃1(λ) + O(ξ2)

]
, (9)

with

g̃1(λ) =
∑′ ∫ ∞

0
dx e− 1

x − x
4 (n2

1+n2
2+n2

3)λ
2

, (10)

where the sum runs over all integer values of n1,2,3, ex-
cluding the term with (n1, n2, n3) = (0, 0, 0) as indicated
by the prime over the summation symbol. For a given
value of n := n2

1 + n2
2 + n2

3 the integral can be performed
analytically, and we can rewrite g̃1 as

g̃1(λ) =
∞∑

n=1

4m(n)√
n λ

K1
(√

n λ
)

, (11)

where K1 is a Bessel function of the second kind and the
multiplicity m(n) indicates how many times the value n
is generated in the sum in (10). The values of m(n) for
n ≤ 20 are given in Table 1. For large argument the Bessel
function K1 drops exponentially: K1(x) 	 e−x/

√
x. Since

λ � 1 by assumption, the sum (11) converges very rapidly,
and it is easy to check how many terms are needed to get
a good approximation for the complete sum. The conver-
gence of the chiral expansion, on the other hand, is more
difficult to test: the coefficient q2 has not yet been calcu-
lated; neither for Mπ nor for Fπ. This would require a full
two-loop calculation in CHPT in finite volume. We are go-
ing to argue, however, that there is a fast and reliable way
to check the convergence of the chiral expansion – a way
that is based on a formula due to Lüscher [8] which we will
discuss in detail. Before doing so, it is useful to rearrange
(8) and (9) by making explicit the expansion of each co-
efficient qm in a series of rapidly decreasing exponentials
(in λ):

Mπ(L) = Mπ

[
1 +

(
ξqM

11 + ξ2qM
21 + O(ξ3)

)
K1(λ)

+
(
ξqM

12 + ξ2qM
22 + O(ξ3)

)
K1(

√
2λ) + . . .

]

= Mπ

[
1 +

∞∑
m=1

∞∑
n=1

ξmqM
mn K1(

√
n λ)

]
, (12)

Fπ(L) = Fπ

[
1 +

∞∑
m=1

∞∑
n=1

ξmqF
mn K1(

√
n λ)

]
, (13)

where at leading order in the chiral expansion the coeffi-
cients q1n follow from Table 1,

qM
1n = +

2m(n)
Nf

√
n λ

, qF
1n = −2Nf m(n)√

n λ
. (14)

Notice that the Bessel functions that we have factored out
in (12) and (13) need not necessarily appear in this form
also at higher orders in the chiral expansion – the coeffi-
cients qM,F

mn are presumably complicated functions of λ, in
general. We do expect, however, that also at higher orders
the result may be expressed as a series of exponentials,
whose leading asymptotic behavior should be captured by
the Bessel functions in (12) and (13).

2.2 Lüscher’s formula for Mπ(L)

Lüscher considered the problem of evaluating the finite-
size effects on a particle mass from a different point of
view. Via graph-theoretic arguments he proved an elegant
relation between the (Euclidean) finite-volume mass shift
and the (Minkowski space) ππ forward scattering ampli-
tude F (ν) in infinite volume [8]:

Mπ(L) − Mπ (15)

= − 3
16π2MπL

∫ ∞

−∞
dy F (iy) e−

√
M2

π+y2 L + O(e−ML) .

The integration runs along the imaginary axis, where the
amplitude is far away from its cuts (cf. Fig. 2): only the
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Table 1. The multiplicities m(n) in (11) for n ≤ 20

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m(n) 6 12 8 6 24 24 0 12 30 24 24 8 24 48 0 6 48 36 24 24

�
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�
	ν

−Mπ Mπ
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Fig. 2. Integration contour in the complex ν plane where ν is
the crossing variable in the (Minkowski space) forward scatte-
ring amplitude. The cut is generated only at NLO in the chiral
expansion

real part of F (iy) contributes to the integral. The one-
particle Lüscher formula (15) is an asymptotic relation for
large L; it is proven to all orders in perturbation theory
for an arbitrary massive QFT, and the subleading piece
is tamed by the bound M ≥ √

3/2 Mπ [8]. An extra term
originating from the three-particle vertex in the original
formula [8] does not appear in our case, due to the odd in-
trinsic parity of the pion and parity conservation in QCD.
Since (15) builds on the unitarity of the theory, it holds
only in full QCD. A variant for the quenched approxima-
tion is not known, if at all possible.

Neither the formula, nor its derivation makes use of
the chiral expansion (indeed the formula was derived be-
fore CHPT was applied to finite-volume effects). However,
for practical applications we need to insert an explicit, an-
alytic representation for the ππ forward scattering ampli-
tude, and for this we shall rely on CHPT. A comparison
to the expression (12) shows that by inserting the chiral
expansion for F in (15) and evaluating the integral one
can obtain the coefficients qM

m1. If we write (extracting a
factor 16π2 for later convenience)

F (iy) = 16π2 [
ξF2 + ξ2F4 + ξ3F6 + O(ξ4)

]
, (16)

the integration of the term F2m yields the coefficient qM
m1.

Since for two degenerate dynamical flavors the ππ scatte-
ring amplitude is known to next-to-next-to-leading order
[9] in the chiral expansion, i.e. up to F6, we can evaluate
the coefficients qM

m1, m = 1, 2, 3 for Nf = 2; all this with-
out having to do a single new loop calculation in CHPT
in finite volume.

We stress that the Lüscher formula is designed to yield
the leading term in the large L-expansion: whenever the
relative suppression factor

subleading
leading

= O
(
e−(M−M)

)
(17)

is not small, subleading effects may be of practical rele-
vance. In order to estimate subleading effects in the large
L-expansion we will go back to the expansion of g̃1(λ).

The rest of this article is devoted to such a combined
use of Lüscher’s formula (15) and the chiral expansion
(16) for two-flavor QCD. It is useful to keep in mind that
the chiral formulae contain low-energy constants that have
been pinned down in real Minkowski space experiments;
some stem indeed from ππ scattering data, which deter-
mine the amplitude in the physical region, e.g. for forward
kinematics, on the cuts in Fig. 2. The very fact that the
chiral expression for F (ν) holds in the whole complex ν
plane is a key ingredient of this work – we rely on the good
analyticity properties of the chiral amplitudes.

2.3 Combining CHPT and the Lüscher formula

The forward scattering amplitude which is needed in
Lüscher’s formula can be expressed in terms of the isospin
invariant amplitude A(s, t, u) as follows:

F (ν) = T (2Mπ(Mπ + ν), 0, 2Mπ(Mπ − ν)) ,

T (s, t, u) = A(s, t, u) + 3A(t, s, u) + A(u, s, t) ,

(18)

where the only independent kinematical variable ν reads

ν ≡ pa · pb

Mπ
=

s

2Mπ
− Mπ , (19)

in terms of the momenta pa,b of the two initial pions.
Since A(s, t, u) is symmetric under t, u exchange, the
forward scattering amplitude is an even function of ν:
F (ν) = F (−ν).

We find it convenient to use a dimensionless integra-
tion variable and introduce

ỹ = y/Mπ , ν̃ = ν/Mπ . (20)

In these variables and with N = 16π2 the chiral expansion
of the forward scattering amplitude is

F (ν) = N
[
ξF2(ν̃) + ξ2F4(ν̃) + ξ3F6(ν̃) + O(ξ4)

]
. (21)

If we combine Lüscher’s formula with the chiral expansion
for F we obtain a simple expression:

Mπ(L) − Mπ

Mπ
≡ RM (Mπ, L) ,

RM (Mπ, L)

= − 3
λ

∫ ∞

−∞
dỹ e−

√
1+ỹ2 λ

[
ξF2(iỹ) + ξ2F4(iỹ)

+ ξ3F6(iỹ) + O(ξ4)
]
+ . . . (22)

= − 3
λ

[
ξI2(λ) + ξ2I4(λ) + ξ3I6(λ) + O(ξ4)

]
+ . . . ,



546 G. Colangelo, S. Dürr: The pion mass in finite volume

where the ellipsis indicates terms of order e−M̄πL and

I2m(λ) =
∫ ∞

−∞
dỹ e−

√
1+ỹ2 λ F2m(iỹ) . (23)

Using the expression for A in [9] (which is specific to Nf =
2) and splitting its bi coefficients

bi ≡ b̄i/N for i = 1, . . . , 4 ,

bi ≡ b̄i/N
2 for i = 5, 6 ,

b̄i ≡ b̄0
i + ξb̄1

i for i = 1, . . . , 4 ,

(24)

the calculation of the coefficients I2m in (22) can be made
in large parts analytically:

I2(λ) = −B0(λ) ,

I4(λ) = B0(λ)
(
5b̄0

1 + 4b̄0
2 + 8b̄0

3 + 8b̄0
4
)

+ B2(λ)
(−8b̄0

3 − 56b̄0
4
)

+
13
3

R0
0(λ) − 16

3
R1

0(λ) − 40
3

R2
0(λ) ,

I6(λ) = B0(λ)
(
5b̄1

1 + 4b̄1
2 + 8b̄1

3 + 8b̄1
4 + 16b̄5 + 16b̄6

)
+ B2(λ)

(−8b̄1
3 − 56b̄1

4 − 48b̄5 + 16b̄6
)

+ R0
0(λ)

(
50 + 10b̄0

1 +
56
3

b̄0
2 +

104
3

b̄0
3 +

56
3

b̄0
4

)

+ R1
0(λ)

(
−1402

27
− 32

3
b̄0
2 − 128

3
b̄0
3 − 32

3
b̄0
4

)

+ R2
0(λ)

(
−1756

27
− 80

3
b̄0
2 − 392

3
b̄0
3 +

136
3

b̄0
4

)

+ R3
0(λ)

(
−116

27
+ 16b̄0

3 − 48b̄0
4

)

+ R0
1(λ)

(
1
9

− π2

18

)
+ R1

1(λ)
(

128
9

− π2

72

)

+ R2
1(λ)

(
−100

9
− π2

24

)

+ R0
2(λ)

(
7
6

− π2

18

)
+ R1

2(λ)
(

16
9

+
7π2

72

)

+ R2
2(λ)

(
π2

24

)
− 46

9
R0

3(λ) − 32
9

R1
3(λ)

− 32
3

R2
3(λ) +

40
3

R0
4(λ) +

40
3

R1
4(λ) , (25)

where the integrals B2k admit a simple analytical repre-
sentation:

B2k(λ) =
∫ ∞

−∞
dỹ ỹ2k e−

√
1+ỹ2λ

=
Γ (k + 1/2)

Γ (3/2)

(
2
λ

)k

Kk+1(λ) ,

B0(λ) = 2 K1(λ) ,

B2(λ) =
2
λ

K2(λ) . (26)

The integrals denoted by Rk
i , i = 0, . . . , 4, are defined as

follows:

Rk
i (λ) = N2

{
Re
Im

∫ ∞

−∞
dỹ ỹk e−

√
1+ỹ2 λ Kππ

i (2(1 + iỹ))

for
{

k even
k odd

; (27)

the Kππ
i functions appear in the ππ scattering amplitude

at the two-loop level in [9] – there they are defined with-
out the ππ superscript. They are collected in Appendix B
and can be easily calculated numerically, while an analytic
representation is not available. The integrals B2k and Rk

i
are plotted in Fig. 3. As can be seen there, they are all of
a similar magnitude – in the representation (22) the small
parameter ξ appears explicitly such that all the remaining
coefficients are not expected to show any special hierarchy.

The last ingredient needed for an evaluation of
RM (Mπ, L) is the numerical values of the LEC which ap-
pear in the coefficients b̄i (which are specific for Nf = 2),
and in Fπ, if the latter needs to be computed from Mπ.
The expression of the b̄i in terms of the relevant LEC can
be found in the appendix. At order p2 no LEC appears. At
order p4 four LEC appear: three of them were determined
rather precisely in [10], whereas for the one that dictates
the NLO quark mass dependence of M2

π , we rely on the
estimate in [1]. Altogether, this means that we use

�̃i ≡ log
Λ2

i

µ2 , (28)

Λ1 = 0.12 +0.04
−0.03 GeV , Λ2 = 1.20 +0.06

−0.06 GeV ,

Λ3 = 0.59 +1.40
−0.41 GeV , Λ4 = 1.25 +0.15

−0.13 GeV .

At order p6 six new LEC appear. Two of them were
determined in [10], whereas for the remaining four we rely
on the resonance saturation hypothesis [9], with a (con-
servative) 100% error estimate:

r̃1 = −1.5 × (1 ± 1) , r̃2 = 3.2 × (1 ± 1) ,

r̃3 = −4.2 × (1 ± 1) , r̃4 = −2.5 × (1 ± 1) ,

r̃5 = 3.8 ± 1.0 , r̃6 = 1.0 ± 0.1 . (29)

Inserting these values and evaluating the corresponding
b̄i one can then determine the integrals I2, ..., I6 in the ξ-
expansion (22), and hence RM (Mπ, L), the details being
given in Sect. 3 and the appendix.

3 Numerical evaluation

3.1 Quark mass dependence of Fπ

In CHPT the expansion parameter is ξ, and in (12) and
(22) the finite-volume effects have been expressed as a
power series in this parameter. If, in a lattice calculation,
both Mπ(L) and Fπ(L) have been determined, then the
square of Mπ(L)/(4πFπ(L)) may be taken as a first ap-
proximation to ξ, with iterative refinement through (12)
and (13). In order to give a numerical prediction with only
Mπ as input, we must know how ξ depends on the quark
mass, or – equivalently – we are left with the problem
of evaluating the pion mass dependence of Fπ. The ana-
lytic expression of the latter is known to next-to-next-to
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Fig. 3. The integrals B2k and Rk
i which are needed for the evaluation of the finite-volume corrections to NNLO. The B2k are

known analytically; the Rk
i have been determined numerically

leading order [11], and reads in our variables

Fπ = F
{

1 + X
[
L̃ + �̃4

]
+ X2

[
−3

4
L̃2 + L̃

(
−7

6
�̃1 − 4

3
�̃2 + �̃4 − 29

12

)
(30)

+
1
2
�̃3�̃4 − 1

12
�̃1 − 1

3
�̃2 − 13

192
+ r̃F (µ)

]}
,

where L̃ = log(µ2/M2
π), X = M2

π/(NF 2) and r̃F (µ) is
the relevant combination of O(p6) LEC. In order to get a
numerical value of Fπ at fixed Mπ we need to specify our
input parameters; the �̃i have been given in the previous

section, whereas for the new LEC we take r̃F (µ) = 0 ± 3
and vary the renormalization scale between µ = 0.5 and
1 GeV. The only remaining parameter is the value of F ,
the decay constant in the chiral limit. We fix it by inverting
(30) – now at the physical pion mass – and expressing F
in terms of Fπ. From Fπ = 92.4 ± 0.3 MeV we obtain

F = (86.2 ± 0.5) MeV . (31)

The pion mass dependence of Fπ is illustrated in Fig. 4
and is seen to be rather mild. This means that in the finite-
volume condition (2) the numerical value on the RHS
(which was assigned using the physical pion mass) holds
to a good approximation also for substantially heavier pi-
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Fig. 4. The plot on the left shows the 1σ-band of the pion mass dependence of Fπ. The plot on the right shows the dependence
of ξ on the pion mass, without including any uncertainty
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ons – the increase of Fπ with the pion mass is too mild
to matter in this respect. In our numerical studies of the
CHPT formulae we restrict ourselves to L ≥ 1.5 fm and
actually expect that this bound might already be too low
with respect to the condition (2). Let us remark that the
same bound has to be respected even if one works in the
ε-regime (4) and wants to compare to CHPT formulae:
in this regime one must still have a relatively large vol-
ume and is consequently forced to use tiny – smaller than
physical – quark masses.

By contrast, the parameter ξ remains small even for
pion masses of about half a GeV, as is shown on the right-
hand side of Fig. 4. In our numerical analysis we will use ξ
exactly as given in this figure and ignore the uncertainties
of this “computed” ξ (shown only in the plot on the left-
hand side of Fig. 4) since, as explained above, by measur-
ing Fπ(L) one can determine ξ iteratively from the lattice
data. We do, however, determine the uncertainty of the
coefficients I2m in the series (22), and for that aim we use
the correlation matrix among the input parameters which
can be obtained from [10]. The numerical values and the
details of the analysis are given in Appendix C.

3.2 Finite volume effects in the pion mass

We are now in a position to evaluate the Lüscher formula
(22) for the relative mass shift RM (Mπ, L). Before doing
so, we find it instructive to have a look at the product

F (iy) e−
√

M2
π+y L , (32)

which is the integrand in the Lüscher formula (15).
We have plotted this integrand in Fig. 5 for different

values of Mπ and L, evaluated at LO, NLO and NNLO
in the chiral expansion. Since the calculation is based on
CHPT and the integration variable y has the dimension
of a mass, the integrand must tend to zero sufficiently
fast beyond O(100) MeV – otherwise the outcome of the
calculation cannot be trusted. This criterion results in a
clear veto against too small box sizes (around ∼ 1 fm). By
the absolute amount, the two integrands are close to each
other whenever the pion is light and the box is sufficiently
large. However, in the whole range of Mπ and L shown in
the graphs, the relative difference between the LO and the
NLO integrand is substantial. The reason is that at LO
the function F (ν) is a constant (F2 can depend at most
linearly on ν, and since it has to be even in ν it can only be
a constant): the energy dependence of the forward scatte-
ring amplitude – in particular the one dictated by the
unitarity cuts – appears only at NLO. The difference be-
tween LO and NLO is therefore not very useful in judging
the convergence of the chiral series, which should rather
be evaluated by comparing NLO and NNLO. The plots in
Fig. 5 show that even for Mπ = 500 MeV the correction in
going from NLO to NNLO is not unacceptably large. Note
that in the graphs in Fig. 5 the product MπL ranges from
about 1 (top left) to 10 (bottom right): in the former case
the product is too small for the asymptotic formula (15)
to apply – we will confirm this below, by comparing this

result to the one obtained with one-loop CHPT in finite
volume, (8).

The relative mass shift RM (Mπ, L) calculated with the
Lüscher formula (15) and (22) is plotted in Fig. 6 as a
function of L for different values of Mπ and in Fig. 7 as
a function of Mπ for selected values of L. In the latter
figure we also show the uncertainty coming from the LEC
– as expected the band grows with the pion mass. These
figures show that the chiral expansion converges nicely
for very light pions (Mπ = 100 MeV) and more slowly,
but still satisfactorily for heavier pions. For light pions,
however, the comparison between the full one-loop CHPT
calculation and Lüscher’s formula (evaluated with the LO
forward scattering amplitude) shows that the leading ex-
ponential behavior is not numerically dominating, even
for volumes as large as L = 4 fm (where MπL ∼ 2 for the
lightest pion considered). Here, the use of Lüscher’s for-
mula is not justified, and one should rather rely on the full
one-loop result in CHPT in finite volume. On the other
hand, the fact that the NLO correction in Lüscher’s for-
mula is rather large indicates that even the full one-loop
result does not give a reliable answer. In such cases (e.g.
when one will be able to simulate 200 MeV pions in a 2 fm
volume) one would need a full two-loop calculation of the
pion mass in CHPT in finite volume in order to reliably
estimate the finite-size corrections.

For heavier pion masses the higher exponentials which
are neglected in Lüscher’s formula are less important and
one is entitled to fully rely on this convenient formula.
We find that for masses above 200 MeV and L ≥ 2 fm
the finite-size effects are at most of the order of a few
percent. We stress that in this range of masses and vol-
umes our evaluation of the finite-size effects is reliable be-
cause we are able to check both the convergence of the
chiral expansion and that of the large volume expansion
of Lüscher. For MπL 	 4 and L 	 4 fm or larger the
predicted shift is below 0.1%: in such cases we may con-
clude that for all practical purposes the mass obtained on
the lattice coincides numerically with the infinite-volume
one. Mass shifts of the order of 1% are predicted only for
Mπ 	 200 ÷ 300 MeV, L 	 2 ÷ 2.5 fm. This is the re-
gion where precision tests of lattice QCD calculations (we
stress again that our calculation applies only to full QCD)
will need the application of such corrections.

Our numerical findings are summarized in Table 2,
where we give for selected values of Mπ and L the rela-
tive mass shift RM computed via the Lüscher formula (15)
and (22) with LO, NLO and NNLO input from CHPT. For
comparison, we give the full one-loop result without large
L-expansion (12) and (14), due to Gasser and Leutwyler
[2]. We have also combined the two results by adding to the
NNLO Lüscher formula the series of large-L suppressed
exponentials which appears in the full one-loop result but
not in Lüscher’s formula. This last figure is our best esti-
mate of the total finite-size correction, but a sizable dif-
ference between this and the NNLO Lüscher result signals
the presence of large uncertainties. In such cases (as we
have argued above) a full two-loop evaluation of these cor-
rections would presumably settle their value.
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Fig. 6. The relative mass shift
RM (Mπ, L) versus L for a few values of
the (infinite-volume) mass Mπ. In ad-
dition, the full one-loop result (8) by
Gasser and Leutwyler is included
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Fig. 7. The relative mass shift
RM (Mπ, L) versus Mπ for a few val-
ues of the box length L. The thin lines
around the NNLO curves represent the
corresponding uncertainties. For com-
parison, the full one-loop result (8) of
Gasser and Leutwyler is included

Note that in the first column of Table 2 we give the
finite-size effects for L = 1.5 fm, although for such small
volumes we are very likely already in conflict with (2),
and are therefore outside the region of applicability of
CHPT. We include this column in the hope that future
high-precision lattice data in the regime 1.5 fm < L < 2 fm
might pinpoint what (2) means quantitatively.

4 Summary and discussion

Making all the necessary extrapolations for lattice QCD
calculations (lattice spacing to zero, quark masses to their
physical value and volume to infinity) at the same time
would be enormously expensive in terms of computer time

and is practically unfeasible. Wherever possible one should
try to use analytical methods as an aid. As far as the
finite-volume effects are concerned, the necessary theoret-
ical tools to control these artifacts have been developed in
the eighties by Lüscher [8] and by Gasser and Leutwyler
[2,4].

Recent progress on the side of lattice calculations make
now this issue of concrete relevance and gave us the moti-
vation to make a thorough numerical study of the finite-
size effects on the pion mass. In order to do so we have
explicitly evaluated the Lüscher formula using as input the
forward scattering amplitude evaluated at leading, next-
to-leading and next-to-next-to-leading order in two-flavor
CHPT. Pushing the chiral expansion to such a high or-
der has shown to be absolutely essential in order to ob-
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Table 2. The relative finite-size effect RM (Mπ, L) for selected values of Mπ and L. In each cell
we give the result of the Lüscher formula (15) with the forward amplitude at LO, NLO and
NNLO accuracy from CHPT. The fourth entry gives the GL result (8, 11) and the last one
contains the full one-loop result shifted by the difference between the NNLO and the LO Lüscher
formula – this, we believe, is a reasonable estimate of the total effect. The power of ten given in
the first entry of the cell applies to all other entries. Note that the first column is very likely in
conflict with the condition (2). Note, finally, that the GL result (9, 11) for the relative shift of
Fπ is (−4) times the fourth entry (for Nf = 2)

1.5 fm 2.0 fm 2.5 fm 3.0 fm 3.5 fm 4.0 fm
100 MeV 0.58 × 10−1 2.73 × 10−2 1.46 × 10−2 0.83 × 10−2 5.02 × 10−3 3.13 × 10−3

1.35(3) 5.15(14) 2.41(7) 1.26(4) 7.15(24) 4.27(15)
1.50(2) 5.60(14) 2.58(8) 1.34(5) 7.51(29) 4.45(18)
2.39 8.74 3.85 1.91 10.2 5.81
3.31 11.6 4.97 2.41 12.7 7.13

200 MeV 2.87 × 10−2 1.08 × 10−2 0.45 × 10−2 2.04 × 10−3 0.96 × 10−3 0.47 × 10−3

6.22(47) 2.03(18) 0.78(8) 3.31(34) 1.50(16) 0.71(8)
7.61(73) 2.39(27) 0.90(12) 3.74(52) 1.67(24) 0.78(12)
6.56 2.00 0.73 2.95 1.29 0.59
11.3 3.31 1.17 4.65 2.00 0.91

300 MeV 1.31 × 10−2 0.39 × 10−2 1.27 × 10−3 0.45 × 10−3 1.64 × 10−4 0.62 × 10−4

2.87(41) 0.78(12) 2.42(41) 0.82(14) 2.93(53) 1.09(20)
3.65(77) 0.95(22) 2.89(72) 0.96(25) 3.41(92) 1.26(35)
2.25 0.56 1.65 0.54 1.88 0.69
4.59 1.12 3.27 1.05 3.65 1.32

400 MeV 0.58 × 10−2 0.13 × 10−2 0.34 × 10−3 0.94 × 10−4 0.27 × 10−4 0.79 × 10−5

1.35(28) 0.30(6) 0.74(17) 1.98(46) 0.56(13) 1.64(39)
1.75(55) 0.37(12) 0.91(32) 2.41(86) 0.67(25) 1.96(73)
0.85 0.17 0.40 1.03 0.29 0.83
2.01 0.41 0.97 2.50 0.69 1.99

500 MeV 0.26 × 10−2 0.47 × 10−3 0.09 × 10−3 0.20 × 10−4 0.44 × 10−5 0.10 × 10−5

0.66(17) 1.16(31) 0.23(6) 0.48(13) 1.07(29) 0.24(7)
0.87(34) 1.50(60) 0.29(12) 0.61(26) 1.34(57) 0.31(13)
0.34 0.54 0.10 0.21 0.45 0.10
0.95 1.58 0.30 0.62 1.35 0.31

tain good control on the convergence of the chiral series:
for a wide range of pion masses and lattice volumes we
find that we can evaluate these corrections reliably. As
shown first by Lüscher, these corrections vanish exponen-
tially with MπL and are therefore negligible for sufficiently
large masses and/or volumes. We have determined the re-
gions where these corrections are important for precision
calculations. Our numerical results are given in Figs. 6 and
7 and in Table 2 – these are the main results of this paper.

If MπL is not very large, keeping only the leading ex-
ponential in the large volume expansion, as is the case
in Lüscher’s formula (15), may not be accurate enough.
In such cases one can take into account the whole series
of exponentials by working with CHPT in finite volume.
One-loop expressions for the pion mass and decay con-
stant are available in the literature [2] and, in numerical
form, in our Table 2, and we have used them to estimate
numerically for which values of MπL is Lüscher’s formula
not enough accurate. For such situations, it is at the mo-
ment difficult to estimate the size of finite-volume effects,

and a full two-loop calculation in CHPT in finite volume
seems the only viable way to do it reliably.
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A The coefficients b̄1, . . . , b̄6

For convenience we provide in this appendix the explicit
expressions for the effective coupling constants b̄1, . . . , b̄6
which appear in the ππ scattering amplitude up to order
p6 [9,10] in the split convention (24):

b̄0
1 = −7

6
L̃ +

4
3
�̃1 − 1

2
�̃3 − 2 �̃4 +

13
18

,
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b̄1
1 = −49

6
L̃2 +

{
−4

9
�̃1 − 56

9
�̃2 − �̃3 − 26

3
�̃4 − 47

108

}
L̃

+
16
3

�̃1�̃4 − 1
2
�̃ 2
3 − 3 �̃3�̃4 − 5 �̃ 2

4 +
28
27

�̃1

+
80
27

�̃2 − 15
4

�̃3 +
26
9

�̃4 − 34π2

27
+

3509
1296

+ r̃1 ,

b̄0
2 =

2
3
L̃ − 4

3
�̃1 + 2 �̃4 − 2

9
,

b̄1
2 =

431
36

L̃2 +
{

6 �̃1 +
124
9

�̃2 − 5
2
�̃3 +

20
3

�̃4 +
203
54

}
L̃

− 16
3

�̃1�̃4 + �̃3�̃4 + 5 �̃ 2
4

− 4 �̃1 − 166
27

�̃2 +
9
2
�̃3 − 8

9
�̃4 +

317π2

216
− 1789

432
+ r̃2 ,

b̄0
3 =

1
2
L̃ +

1
3
�̃1 +

1
6
�̃2 − 7

12
,

b̄1
3 = −40

9
L̃2 +

{
−38

9
�̃1 − 20

3
�̃2 + 2 �̃4 +

365
216

}
L̃

+
4
3
�̃1�̃4 +

2
3
�̃2�̃4

+
89
27

�̃1 +
38
9

�̃2 − 7
3
�̃4 − 311π2

432
+

7063
864

+ r̃3 ,

b̄0
4 =

1
6
L̃ +

1
6
�̃2 − 5

36
,

b̄1
4 =

5
6
L̃2 +

{
1
9
�̃1 +

8
9
�̃2 +

2
3
�̃4 − 47

216

}
L̃ +

2
3
�̃2�̃4

+
5
27

�̃1 +
4
27

�̃2 − 5
9
�̃4 +

17π2

216
+

1655
2592

+ r̃4 ,

b̄5 =
85
72

L̃2 +
{

7
8
�̃1 +

107
72

�̃2 − 625
288

}
L̃ − 31

36
�̃1

− 145
108

�̃2 +
7π2

54
− 66029

20736
+ r̃5 ,

b̄6 =
5
24

L̃2 +
{

5
72

�̃1 +
25
72

�̃2 − 257
864

}
L̃ − 7

108
�̃1

− 35
108

�̃2 +
π2

27
− 11375

20736
+ r̃6 , (33)

where

�̃i ≡ log
Λ2

i

µ2 , r̃i = N2rr
i (µ) , L̃ = log

µ2

M2
π

. (34)

Note that the quark masses exclusively enter through ξ
and L̃; the remaining quantities are independent thereof.

B The functions Kππ
i

The functions Kππ
i (x), i = 0, . . . , 4 have been introduced

in [9], and we reproduce them here for convenience. With

z = 1 − 4
x

and h(x) =
1

N
√

z
log

√
z − 1√
z + 1

,

they read

Kππ
0 (x) =

z

N
h(x) +

2
N2

[
=

1
N

J̄

]
,

Kππ
1 (x) = zh2(x) ,

Kππ
2 (x) = z2h2(x) − 4

N2 ,

Kππ
3 (x) =

Nz

x
h3(x) +

π2

Nx
h(x) − π2

2N2 ,

Kππ
4 (x) =

1
xz

[
Kππ

0 (x) +
1
2
Kππ

1 (x) +
1
3
Kππ

3 (x)

+
(π2 − 6)x

12N2

]
.

C Evaluation of the uncertainties

In order to quantify the uncertainty of the I2m in (22),
we need to know the correlation matrix among the LEC
involved and the partial derivatives of the I2m with respect
to the LEC.

The correlation matrix Cij among our ten input pa-
rameters is given in Table 3. It has been obtained from
[10], which represents so far the best determination of the
LEC appearing in the ππ scattering amplitude. We re-
mark that some of our input parameters were also used
as input in [10] and therefore are statistically independent
– this is seen in Table 3 where some of the off-diagonal
matrix elements are zero.

Combining (25) and (33) one finds

∂I4

∂�̃1
= 4B0 − 8

3
B2 ,

∂I4

∂�̃2
=

8
3
B0 − 32

3
B2 ,

∂I4

∂�̃3
= −5

2
B0 ,

∂I4

∂�̃4
= −2B0 , (35)

and

∂I6

∂�̃1
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4L̃ + 16�̃4 +
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)
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)
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= 4B0(λ) ,

∂I6

∂r̃3
= 8B0(λ) − 8B2(λ) ,

∂I6

∂r̃4
= 8B0(λ) − 56B2(λ) ,

∂I6

∂r̃5
= 16B0(λ) − 48B2(λ) ,

∂I6

∂r̃6
= 16B0(λ) + 16B2(λ) . (36)

These two vectors are then used to sandwich the
correlation matrix of our input parameters. With x ≡
{�̃1, . . . , �̃4, r̃1, . . . , r̃6}, the resulting uncertainty is

∆RM = ξ2

√√√√ 10∑
i,j=1

(
∂I4

∂xi
+ ξ

∂I6

∂xi

)
Cij

(
∂I4

∂xj
+ ξ

∂I6

∂xj

)
,

(37)
where ∂I4/∂xi is zero for i > 4, and the rationale for
omitting the uncertainty in our evaluation of ξ has been
explained in the text.
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8. M. Lüscher, Commun. Math. Phys. 104, 177 (1986)
9. J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, M.E. Sainio,

Phys. Lett. B 374, 210 (1996) [hep-ph/9511397]; Nucl.
Phys. B 508, 263 (1997) [Erratum B 517, 639 (1998)]
[hep-ph/9707291]

10. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603,
125 (2001) [hep-ph/ 0103088]

11. J. Bijnens, G. Colangelo, P. Talavera, JHEP 9805, 014
(1998) [hep-ph/9805389]


